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Abstract 

In the present paper the generalized mean codeword length is studied and characterized a new generalized 

information measure by obtaining bounds in terms of a new generalized information measure using Lagrange’s 

Multiplier method. The Shannon’s Noiseless coding theorem is verified by considering Huffman coding 

scheme and Shannon Fano coding scheme on taking empirical data. We study the monotone behaviour of the 

new generalized information measure with respect to parameters and  . The important properties of the new 

generalized measure of information have also been studied.  
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1. Introduction 

Let X  be a discrete random variable taking a finite number of possible values 1 2, , , nx x x  with probabilities 

1 2, , , np p p  respectively such that 0, 1,2, ,ip i n     and
1

1
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i

i

p


 . The function  1 2, , , nH p p p  is to be 

interpreted as the average uncertainty associated with the events  1 2, , , 1,2, ,nx x x i n   given by  
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(1.1) 

(1.1) plays a leading role in coding theory and provides a lower and upper bounds on the average codeword 

length Let a finite set of n input symbols  nxxxX ,,, 21 
 
be encoded using D size alphabets with 

probability distribution  
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21 1,0,,,,  . It was shown by Kraft (1949) that 

there is a unique decipherable code with code word lengths il  ni ,,2,1   satisfying the following 

inequality:
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which is known as Kraft’s inequality.  
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           (1.3) be the mean 

codeword length associated with input symbols  nxxx ,,, 21  , then under the Kraft’s inequality Shannon 

(1948) proved the following result for a noiseless channel: 

 

    log , 2,H P L H P D D   
       

 (1.4) 

with equality if and only if iDi pl log . 

  

Shannon-Fano coding is less efficient than Huffman coding, but we have the advantage that we can go directly 

from the probability ip  to the codeword length il . Let S be set of the source symbols nsss ,,, 21 
 
with their 

corresponding probabilities 1 2, , np p p ,
 
then for each ip  there is an integer il  such that  
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 ,       (1.5)                                                                                    

where D is number of code’s alphabets. 

Now (1.5) implies  
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    ,         (1.7)                                                                                            

which is Kraft’s inequality, and that is necessary and sufficient condition for decodable code having these 

lengths il . 

 Multiplying (1.7) by ip  and summing over i, we have  
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    1 PHLPH DD ,          (1.9) 

where L is average codeword length given by   
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The above defined average codeword length has been generalized by so many authors. Hooda and Bhaker 

(1992) gave the following generalization of (1.9): 
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and studied its lower and upper bounds by applying Holder’s inequality. They proved the following result: 

 

      1H P L P H P  

    
       

(1.11) 
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where  
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.     (1.12) 

This generalized entropy (1.12) was characterized by Aczel and Daroczy (1963) and was also characterized by 

Kapur (1967) by following a different method. 

                                                                                                 

In the present paper we study the generalized mean codeword length and characterize a new generalized 

information measure by obtaining bounds in terms of a new generalized measure of information as a biproduct 

in section 2. In section 3 we verify the Shannon’s Noiseless Coding theorem in cases of Shannon Fano coding 

scheme and Huffman Coding scheme. We study the monotone behaviour of the new generalized information 

measure with respect to parameters and  in section 4. In section 5 we study the properties of a new 

generalized measure of information.    

 

2. A Generalized Mean Codeword Length and its Bounds  

Hooda and Bhaker (1992) gave the following generalization of mean codeword length:    
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(2.1)                                                                                               

where il  is the length of the codeword ix  and ip  is the probability of occurrence of codeword ix   

The codeword length defined in (2.1) satisfies the following essential properties of being a mean codeword 

length: 

 

 

1. When llll n  21 , then   lPL 
   

2.  L P

  lies between minimum and maximum values of .,,, 21 nlll   

3. When 1  and  1  , then  L L

   , where 
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 Next we obtain the lower and upper bounds of (2.1) in the following theorem. 

 

Theorem 2.1.For all uniquely decipherable codes the exponentiated mean codeword length  L P

  defined in 

(2.1) satisfies the following relation  

                                                 1,H P L P H P  

    
     

(2.2) 

  where  
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(2.3)                                                                        

under the generalized Kraft inequality given by  
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Proof: Let us choose
1 il
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, for each .,,2,1 ni                                              (2.5) 

                 

 Substituting (2.5) in (2.1) we have        
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Thus we are to minimize (2.6) subject to the following constraints: 
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(2.7) 

Since  L P

  is pseudo convex function for each ni ,,2,1  , therefore, we can obtain the minimum value of 

 L P

  by applying the Lagrange’s multiplier method. 

Let us consider the corresponding Lagrangian as given below: 
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Differentiating w.r.t. ix  and equating to zero, we get 
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It implies                                                                                                                               

i ix cp  , where 
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           (2.8)                                                                                                                 

 (2.8) together with (2.5) gives  
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Taking log of both sides, we have 
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(2.9)                                                                                                                                                                                                         
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Multiplying both sides of (2.9) by ,10as0
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 we get  
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(2.10)

                                                                                    

 

From (2.1) and (2.10), we get the minimum value of  )(PL

  as follows: 
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il  is always integral value in (2.9), so it must be equal to 
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Putting (2.12) in (2.1), we have 
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Since 10  i , therefore, (2.13) reduce to 
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(2.14)                                                                             

Hence from (2.11) and (2.14), we get 

      1,H P L P H P  

      which is (2.2). 

Thus by applying optimization technique in studying bounds of mean code word length  L P

 and we obtain a 

new generalized measure of information  H P

 given by (2.3).  
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3. Application of Shannon-Fano Coding and Huffman Coding schemes  

     

In this section we illustrate the veracity of the theorem 2.1 by taking empirical data as given in table (3.1) and 

(3.2) on the lines of Prakash and Priyanka (2012). 

 

  Table-3.1 
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   .3846      00       2       .5       2  2.21979   

2.03595 

  91.78% 

   .1795      01       2      

   .1538      10       2      

   .1538     110       3      

     .1282     111       3      

 

 

Table-3.2 
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Length of 

Huffman 

code 
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   .3846        0        1       .5        2   2.12484 2.03595   95.81% 

   .1795      100        3      

   .1538      101        3      

   .1538      110        3      

   .1282      111        3      

 

From table (3.1) and (3.2) we infer the following: 

(i)  Theorem 2.1 holds in both cases of Shannon -Fano codes and Huffman codes.  

(ii) Huffman mean codeword length is less than Shannon –Fano mean codeword length. 

(iii) Coefficient of efficiency of Huffman Codes is greater than Coefficient of efficiency of    
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      Shannon -Fano Codes i.e. it is concluded that Huffman coding Scheme is more efficient than    

      Shannon -Fano coding scheme.    

 

4. Monotone Behaviour of the New Generalized Information Measure  H P

  

In this section we study the monotone behaviour of the new generalized information measure given by (2.3) 

with respect to parameters and  . 

Let  0.3846,0.1795,0.1538,0.1538,0.1282P   be a set of probabilities. 

Assuming 3  . We tabulate the values of  H P

  for different values of  as given in the following table: 

Table 4.1: Monotone behaviour of  H P

  with respect to   

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 H P

  2.37855 2.33423 2.29160 2.25586 2.22722 2.20438 2.18603 2.17104 2.15861 

 

 

Next we draw the graph of the table (4.1) and illustrate from figure (4.1) that  H P

  is monotonic decreasing 

with increasing values of . 

 
Fig: 4.1 Monotone behaviour of  H P

  with respect to   

 

Assuming 0.5  . We tabulate the values of  H P

  for different values of  as given in the following table: 

 

Table: 4.2 Monotone behaviour of  H P

  with respect to   

  2 4 6 8 10 

 H P

  2.03594 2.48223 2.70162 2.74676 2.75534 
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Next we draw the graph of the table (4.2) and illustrate from figure (4.2) that  H P

  is monotonic increasing 

with regard values of  . 

 
Fig4.2: Monotone behaviour of  H P

  with respect to   

 

5. Properties of the new generalized Information Measure  H P

  

In this section we shall discuss properties of the new generalized measure of Information  H P

 given by 

(2.3) 

Property5.1  H P

  satisfies the additivity of the following form: 

                             H P Q H P H Q  

     ,                                                                 

where   mnnmm qpqpqpqpqpqpQP ,,,,,,,, 1212111 
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Property5.2  H P

  is continuous if and only if  H P

  is monotonic non-increasing on 
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Proof:   From (2.3) we have  
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Let us define function  qG  by 
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It implies 

 ,1 0 0, 0, 1
d

H q q
dq



        . 

Thus  H P

  is a non- increasing monotonic function and consequently it is continuous. 

 

Property5.3  H P

  is a symmetric function of its arguments  nppp ,,, 21   . 

Proof: It is evident that   H P

  is a symmetric function of argument nppp ,,, 21  . 

i.e.    1 2 1 1 2 1, , , , , , , ,n n n nH p p p p H p p p p 

    . 

Property5.4  H P

  is non- negative. 

Proof:  From (2.3) we have 
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 From table (3.1) and (3.2) it observes that   H P

  is non-negative for given values of  and  .       

            

              

             

 

Property5.5  H P

  is concave function for nppp ,,, 21  . 

Proof:  Since the second derivative of  H P

  is negative on given interval   1,0  . 
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i.e.       
 2

2
0

i

d H P

dp




        for  1,0ip  and .,,2,1 ni   ,therefore, 

 H P

  is concave function for nppp ,,, 21  . 

 

Conclusion 

The various authors have characterized the generalized information measures by various methods, but we have 

introduced a new generalized measure of information on studying the bounds of generalized mean codeword 

length by optimization technique. 

 

Further we have established the Shannon’s Noiseless Coding theorem with the help of two different coding 

techniques by taking experimental data and prove that Huffman coding scheme is more efficient than Shannon-

Fano coding scheme. We have studied the monotone behaviour of the new generalized information measure 

with respect to parameters and  . The important properties of a new generalized measure of information 

have also been studied. 
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